โครงการวิจัยที่ ภ. 46-09 / ย. 4 / รายงานฉบับที่ 1 [ฉบับสมบูรณ์]

เผยแพร่และส่งเสริมการใข้ระบบบำบัดน้ำเสีย แบบการนำน้ำกลับมาใช้ใหม่ ในอุตสาหกรรมฟอกย้อม

สถาบันวิจัยวิทยาศาสตร์และเทศโนโลยีแห่งประเทศไทย

สถาบันวิจัยวิทยาศาสตร์และเทคโนโลยีแห่งประเทศไทย

> โครงการวิจัยที่ ภ. 46-09 พัฒนาการจัดการและระบบบำบัดน้ำเสียอุตสาหกรรมฟอกย้อม เพื่อการนำน้ำกลับมาใช้ใหม่

โครงการย่อยที่ 4 เผยแพร่และส่งเสริมการใช้ระบบบำบัดน้ำเสียแบบการนำน้ำกลับมาใช้ใหม่ใน อุตสาหกรรมฟอกย้อม

รายงานฉบับที่ 1 (ฉบับสมบูรณ์)

 เผยแพร่และส่งเสริมการใช้ระบบบำบัดน้ำเสียแบบการนำน้ำกลับมาใช้ใหม่ใน อุตสาหกรรมฟอกย้อมโดย
แสวง เกิดประทุม
อธิษฐาน ทิมแย้มประเสริฐ
ศิริถักษณ์ ตั้งทรงสุวรรณ์
นรา สุประพัฒน์โภคา
บุญเตือน มงคลแถลง

บรรณาธิการ
ดารณี ประภาสะโนบล
นฤมล รื่นไวย์
ลิขิต หาญจางสิทธิ์
บุญเรียม น้อยชุมแพ
ปฐมสุดา สำเร็จ

วว., กรุงเทพฯ 2551
สงวนลิขสิทธิ์

รายงานฉบับนี้ได้รับการอนุมัติให้พิมพ์โดย

ผู้ว่าการสถาบันวิจัยวิทยาศาสตร์และเทคโนโลยีแห่งประเทศไทย
(นงลักษณ์ ปานเกิดดี)
ผู้ว่าการ

กิตติกรรมประกาศ

คณะผู้จัดทำ โครงการเผยแพร่และส่งเสริมการใช้ระบบบำบัดน้ำเสียแบบการนำน้ำ กลับมาใช้ใหม่ในอุตสาหกรรมฟอกย้อม ขอแสดงความขอบคุณทางโรงงาน TTL ที่ได้เอื้อเฟื้อให้ เข้าชม โรงงาน และให้การสนับสนุนด้านสถานที่ในการทำการทดลองวิจัยและรวมทั้งการ พัฒนาการบำบัดน้ำเสียจากอุตสาหกรรมฟอกย้อมของโรงงาน และโรงงานเส้นหมี่ชอเฮง โรงงาน สายวิวัฒน์ ที่เอื้อเฟื้อสถานที่ในการจัดสัมมนาเพื่อเผยแพร่ระบบการบำบัดน้ำเสียแก่โรงงานต่างๆ เพื่อให้งานสำเร็จตามวัตถุประสงค์ ไว้ ณ ที่นี้.

สารบัญ

หน้า

กิตติกรรมประกาศ ก
สารบัญตาราง ค
สารบัญรูป ง
ABSTRACT 1
บทคัดย่อ 2

1. บทนำ 4
2. วิธีการดำเนินงาน 15
3. ผลการเผยแพร่ 17
4. สรุปผลการเผยแพร่ 25
5. เอกสารอ้างอิง 26
6. ภาคผนวก 27

สารบัญตาราง

หน้า
ตารางที่ 1. ตารางแสดงคุณภาพน้ำเฉลี่ยที่ใช้ในอุตสาหกรรมฟอกย้อม 6
ตารางที่ 2. ปริมาณน้ำใช้เฉลี่ย, ต่ำสุด, สูงสุด ของกระบวนการผลิตสิ่งทอ 8ประเภทต่างๆ กัน
ตารางที่ 3. คุณสมบัติของน้ำเสียและปริมาณในอุตสาหกรรมสิ่งทอแยกตาม 9 ประเภท/ขั้นตอนต่างๆ
ตารางที่ 4. สิ่งเจือปน (สารประกอบ) ในน้ำเสียตามขั้นตอนต่าง ๆ ของกระบวนการ 10ฟอกย้อมตารางที่ 5. ความเข้มข้นเฉลี่ย และ ปริมาณจำเพาะของน้ำเสียในขั้นตอนหลัก 12ของกระบวนการฟอกย้อม
ตารางที่ 6. ผลลักษณะน้ำเสียและน้ำใช้ของโรงงานในกลุ่มเป้าหมายที่ได้ทำ 19 การศึกษา

สารบัญรูป

หน้า
รูปที่ 1. ระบบบำบัดน้ำเสียโดยใช้เมมเบรนแบบจมตัว 17
รูปที่ 2. เครื่องผลิตโอโซนที่ใช้ในการบำบัดน้ำเสียจากกระบวนการย้อมสีรีแอคทีฟ 18
รูปที่ 3. การประชุมสัมมนาเรื่องการบำบัดน้ำเสียโดยใช้เมมเบรน 20
รูปที่ 4. อธิบายเกี่ยวกับโครงสร้างของเมมเบรนให้แก่โรงงานในกลุมเป้าหมาย 20
รูปที่ 5 . บรรยายในสัมมนาเชิงปฏิบัติการเรื่องเทคโนโลยีเมมเบรนแบบจมตัว 21
รูปที่ 6. สัมมนาเชิงปฏิบัติการเรื่องเทคโนโลยีเมมเบรนแบบจมตัว 21
รูปที่ 7. สาธิตการหาดัชนีตะกอนเพื่อบ่งชี้ถึงการอุดตันในเมมเบรน 22
รูปที่ 8. การทดสอบการกรองโดยระบบอัตราฟิลเตรชั่น 22
รูปที่ 9 . การจัดแสดงนิทรรศการผลงานการวิจัยการบำบัดน้ำเสีย 24
รูปที่ 10 . ปริมาณการใช้น้ำบาดาลในอุตสาหกรรมประเภทต่างๆ 28
รูปที่ 11. แนวทางแก้ไขปัญหาด้านการใช้น้ำของผู้ใช้น้ำจากแหล่งต่างๆ 28
รูปที่ 12. ระบบบำบัดน้ำเสียแบบตะกอนเร่งที่ใช้กับอุตสาหกรรมฟอกย้อมทั่วๆ ไป 29
รูปที่ 13 . ระบบบำบัดน้ำเสียระบบ Integrated Membrane System เพื่อการนำน้ำกลับ 29 มาใช้ใหม่
รูปที่ 14. ระบบการกรอบอัตราฟิลเตรชัน 30
รูปที่ 15 . ระบบการกรองอัตราฟิลเตรชัน 30
รูปที่ 16 . การอุดตันของตะกอนบนไส้กรอง 5 ไมครอน 31
รูปที่ 17. ค่าความเข้มสีของน้ำเสียก่อนบำบัดและหลังบำบัด 31
รูปที่ 18. ประสิทธิภาพในการกำจัดสีของระบบบำบัดน้ำเสีย 32
รูปที่ 19. สภาพความเป็นด่างของน้ำที่เดินระบบ 32
รูปที่ 20 . ประสิทธิภาพของการขจัดความเป็นด่างของระบบบำบัด 33
รูปที่ 21 . ปริมาณความกระด้างของน้ำเสียก่อนการบำบัดและหลังการบำบัด 33
รูปที่ 22. ปริสิทธิภาพในการขจัดความกระด้างของน้ำเสีย 34
รูปที่ 23. ปริมาณแคลเซียมก่อนการบำบัดและหลังการบำบัด 34
รูปที่ 24. ปริสิทธิภาพในการขจัดแคลเซียมของระบบบำบัด 35
รูปที่ 25 . ปริมาณคลอไรด์ของน้ำก่อนการบำบัดและหลังการบำบัด 35
รูปที่ 26. ประสิทธิภาพในการกำจัดคลอไรด์ของระบบบำบัดน้ำเสีย 36

สารบัญรูป (ต่อ)

หน้า
รูปที่ 27. ดัชนีบ่งชี้การเกิดตะกรันหินปูน ขณะเดินระบบบำบัดน้ำเสีย 36
รูปที่ 28 . รูปแบบของระบบกรองอัตราฟิลเตรชันที่ออกแบบเพื่อใช้กับ 37
ระบบน้ำเสียอุตสาหกรรมฟอกย้อม
รูปที่ 29 . ค่ามาตรฐานของน้ำที่ใช้ในกระบวนการฟอกย้อม 37
รูปที่ 30 . คุณภาพน้ำที่ผลิตได้เพื่อการนำกลับไปใช้ในกระบวนการผลิต 38
รูปที่ 31 . เงื่อนไขการออกแบบระบบบำบัดน้ำเสียนาโนฟิลเตรชัน 38
รูปที่ 32. ราคาการลงทุนเบื้องต้นของระบบบำบัดน้ำเสียนาโนฟิลเตรชัน 39
รูปที่ 33. รูปชุดทดสอบการใช้โอโซนบำบัดน้ำเสียฟอกย้อม 39
รูปที่ 34. อัตราการลดลงของสีในน้ำเสียที่บำบัดด้วยโอโซน 40
รูปที่ 35 . เปรียบเทียบน้ำเสียจากกระบวนการย้อมสีรีแอกทีฟก่อนการบำบัดและหลัง 40
การบำบัด
รูปที่ 36. การใช้ tiO_{2} ไทเทเนียมไดออกไซด์แคทาลิสต์ในการบำบัดน้ำเสียสีรีแอกทีฟ 41

5
Δ
B

TEXTILE WASTEWATER TREATMENT PROCESSES FOR WATER REUSE PROMOTION

Sawaeng Gerdpratoom, Athitan Timyamprasert, Siriluc Tangsongsuwan, Nara Suprapatpoka and Boonteun Mongkoltalang

Abstract

The result of textile wastewater treatment for reuse by integrated membrane system, immersed membrane and ozone were depolarization of textile waste water. It was found that the wastewater to pass the effluent of conventional waste water treatment, which are membrane process. That use ultra filtration and nanofiltration or reverse osmosis. These methods approximate $20-30 \%$ of total waste water. Therefore, reuse waste water are not more than 30% because the TDS of wastewater to exceed $3,000 \mathrm{mg} / \mathrm{l}$. These are control by the regulation standard industrial waste water. Thus, the expenses were increased from $15-20 \mathrm{baht} / \mathrm{m}^{3}$ of treated wastewater.

Wastewater treatment from desizing process, which is glazed the yarn in spinning process by a chemical substance such as PVA. That was non biodegradable and not treats by Bio-treatment. Therefore, the waste water treatment divided in process treatment by ultra filtration process for PVA recovery. It reuse grazed the thread. The water was remained and desizing agent, which reuse in desizing process. This reduced total waste water about $10-15 \%$ and COD about $5-10 \%$. Thus the expenses of waste water treatment are reduced about $7-10 \mathrm{baht} / \mathrm{m}^{3}$ of treated water.

The wastewater treatment from reactive dye by ozone was decolorizing reactive color about $60-70 \%$ and breakdown nonbiodegradable to biodegradable compound. It was treated by Bio-Treatment and membrane process. These had water reuse about $20-30 \%$. Thus, the expenses of wastewater treatment are $15-23 \mathrm{baht} / \mathrm{m}^{3}$ of treated water.

The result from promotion of textile wastewater treatment project, TTL Industry was interested in development of reuse wastewater treatment investment. At the present time, this project was delay because the economic was crisis.

5
(4)
(1)

เผยแพร่แดะส่งเสริมการ่ช้ระบบบำบัดน้ำเสีย แบบกาานำน้ำกลับมาใช้ใหม่ในุุตสาหกรรมฟอกย้อม

แสวง เกิดประทุม ${ }^{1}$, อธิษฐาน ทิมแย้มประเสริฐ ${ }^{1}$, ศิริลักษณ์ ตั้งทรงสุวรรณ์ ${ }^{1}$, นรา สุประพัฒน์โภคา ${ }^{1}$ และ บุญเตือน มงคลแถลง ${ }^{1}$

บทคัดย่อ

จากผลการเผยแพร่ระบบบำบัดน้ำเสียจากอุตสาหกรรมฟอกย้อมเพื่อการนำน้ำกลับมาใช้ ใหม่ โดยใช้ระบบเนื้อเยื่อ (Integrated Membrane System) และระบบเมมเบรนแบบจมตัว (Immersed Membrane) และการใช้โอโซน (Ozone) ในการกำจัดสีในน้ำเสียอุตสาหกรรมฟอกย้อม ให้แก่โรงงานต่างๆ พบว่าในการบำบัดน้ำสียยุตสาหกรรมฟอกอ้อมเพื่อนำน้ำกลับมาใช้ซ้ำ สามารถ นำน้ำเสียที่ผ่านระบบบำบัดที่มีอยู่นั้นมาผ่านระบบบำบัดด้วยกระบวนการเมมเบรน ซึ่งใช้กระบวนการกรองระบบอัลตราฟิลเตรชัน และระบบนาโนฟิลเตรชันหรื้ืีเวอร์สออสโมซิส, ซึ่งวิธีการนี้จะ สามารถนำน้ำกลับมาใช้ได้ประมาณ $20-30 \%$ ของน้้าเสียทั้งหมด ทั้งนี้ถ้านำน้ำเสียกลับมาใช้ซ้ำ มากกว่า 30% จะทำให้น้ำทิ้งมีค่าปริมาณสารละลาย (TDS) เกิน 3,000 มิลลิกรัมต่อลิตรน้ำทิ้งจาก โรงงานอุตสาหกรรม จะต้องเสียค่าใช้จ่ายเพิ่มเติมจากกระบวนการบำบัดน้ำเสียปกติประมาณ $15-20$ บาท ทั้งนี้ขึ้นอยู่กับคุณภาพของน้ำเสีย (รวมค่าใช้จ่ายในการลงทุน) และการบำบัดแบบแยกส่วน ณ จุดใช้งาน (in process treatment) โดยการแยกน้ำสียในกระบวนการผลิตน้ำเสียในส่วนที่ไม่ สามารถบำบัดโดยกระบวนการบำบัดแบบปกติ คือสารตกตะกอนและการบำบัดทางชีวภาพ ได้ นำมาบำบัดในกระบวนการทางเคมีเละกระบวนการทางเมมเบรน การบำบัดน้ำเสียจากกระบวนการลอกแป้ง (Desizing) สารเคมีที่เคลือบเส้นด้าย (Sizing agent) เช่น PVA จะเป็นสารที่ไม่ถูกย่อย สลายด้วยแบคทีเรีย (Non biodegradable), ซึ่งจะไม่สามารถบำบัดโดยวิธีการบำบัดทางชีวภาพได้ จึงควรแยกบำบัด ณ จุดใช้งานโดยกระบวนกรองอัลตราฟิลเตชันเพื่อแยกสาร PVA นำกลับไปใช้ เคลือบเส้นด้ายส่วนน้ำที่เหลือพร้อมสารลอกแป้ง (Desizing agent) สามารถนำกลับไปใช้ในระบบ ได้ การใช้กระบวนการนี้จะสามารถลดปริมาณน้ำสียรวมได้ประมาณ $10-15 \%$ และสามารถลด ปริมาณค่า COD ในน้ำเสียลงได้ $5-10 \%$ ค่าใช้ำยในการบำบัด $7-10$ บาท/ลูกบาศก์เมตร (รวมค่า ลงทุน). นอกจากนี้การบำบัดน้ำเสียจากการอ้อมสีรีเอกทีฟโดยการใช้โอโซนสามารถบำบัดน้ำเสีย

[^0]จากสีรีเอกทีฟจนสีลดลง $60-70 \%$ แล้วนำไปบำบัดต่อด้วยวิธีการบำบัดทางชีวภาพและโดยการใช้ เมมเบรนสามารถนำน้ำกลับมาใช้ซ้ำได้ $20-30 \%$ โดยเสียค่าใช้ว่ายในการบำบัด $15-23$ บาทต่อ ลูกบาศก์เมตร. จากการดำเนินการเผยแพร่ โรงงาน TTL จำกัด มหาชน มีความสนใจที่จะ ดำเนินการลงทุนพัฒนาระบบบำบัดน้ำเสียเพื่อการนำน้ำกลับไปไช้ซ้ำ แต่ยังไม่ได้ดำเนินการเนื่อง จากภาวะเศรษฐิกิจ ไม่เอื้ออำนวย.

1. บทนำ

อุตสาหกรรมฟอกย้อมเป็นอุตสาหกรรมประเภทหนึ่งที่มีการใช้น้ำปริมาณมาก โดยเฉลี่ย มีการใช้น้ำประมาณ 1,000 ลูกบาศก์เมตร/โรงงาน/วัน จากปริมาณโรงงานทั้งขนาดเล็ก, กลาง, และใหญ่ รวมทั้งหมด 450 โรง ปริมาณการใช้น้ำของอุตสาหกรรมฟอกย้อมเฉลี่ยประมาณ 300,000 ลูกบาศก์เมตร/โรงงาน/ปี และในปัจจุบันยังต้องการการพัฒนาเพื่อผลิตผลิตภัณฑ์ที่มีคุณภาพสูงขึ้น ซึ่งที่ผ่านมามีการนำเข้าผ้าผืนเพื่อใช้ผลิตเสื้อผ้าสำเร็จรูปในมูลค่าสูงถึง 17,000 ล้านบาท แต่มูลค่า การส่งออกผ้าผืนประมาณ $25,000-30,000$ ล้านบาท, ซึ่งส่วนใหญ่เป็นผ้าดิบ ขณะที่ข้อมูลปี พ.ศ. 2540 อุตสาหกรรมสิ่งทอและเครื่องนุ่งห่มสร้างรายได้มีมูลค่าถึง $170,289.8$ ล้านบาท คิดเป็นร้อย ละ 9.4 ของมูลค่าการส่งออกรวมทั้งประเทศ ประกอบกับปัญหาภาวะการแข่งขันทางการค้ากับ ตลาดต่างประเทศซึ่งต้องการผลิตภัณฑ์ที่ผลิตจากโรงงานที่ไม่ก่อให้เกิดผลกระทบต่อสิ่งแวดล้อม เนื่องจากเป็นอุตสาหกรรมที่ใช้น้ำเป็นปริมาณมาก ดังนั้นโรงงานฟอกย้อมที่มีขนาดใหญ่จะต้อง ใช้น้ำเป็นปริมาณมากถึงวันละ $4,000-5,000$ ลูกบาศก์เมตร.

อุตสาหกรรมฟอกย้อมมีปริมาณการใช้น้ำมากที่สุดรองลงมาเป็นอุตสาหกรรมอาหาร ทุก วันนี้ปริมาณน้ำเพื่อการอุปโภคบริโภคที่มีอยู่เริ่มไม่เพียงพอกับการขยายตัวในภาคเกษตรกรรมและ อุตสาหกรรม ดังจะเห็นได้จากการเกิดปัญหาการขาดแคลนน้ำสำหรับใช้ในการเกษตรกรรมในภาค ตะวันออกเฉียงเหนือ ซึ่งการขาดแคลนน้ำในอุตสาหกรรมในสาขาต่างๆ ของประเทศไทย โดยเฉพาะเขตอุตสาหกรรมภาคตะวันออก หรือแม้แต่ในกรุงเทพมหานครเองรวมทั้งในเขต ปริมณฑลด้วย และในปัจจุบันนี้ทางราชการได้มีการประกาศห้ามใช้น้ำบาดาลในเขตจังหวัดภาค กลาง เนื่องจากเกิดปัญหาแผ่นดินทรุด ทำให้ผู้บริโภคต้องใช้น้ำประปาซึ่งมีราคาแพงและมีปริมาณ ไม่เพียงพอ ส่งผลกระทบต่อภาคอุตสาหกรรรมของประเทศ. ดังนั้นการศึกษาเรื่องการบริหาร จัดการน้ำใช้ภายในโรงงานและการบำบัดน้ำเสียเพื่อการนำน้ำกลับมาใช้ใหม่น่าจะเป็นทางออกที่ดี สำหรับอุตสาหกรรมฟอกย้อมที่ต้องใช้น้ำเพื่อการผลิตเป็นจำนวนมาก การลดปริมาณการใช้น้ำ และ บำบัดน้ำเสียโดยกำจัดสีย้อมปนเปื้อนเพื่อให้น้ำมีคุณภาพเพื่อนำกลับมาใช้ใหม่ จะช่วย แก้ปัญหาการขาดแคลนน้ำหรือปัญหาการใช้น้ำมากจากอุตสาหกรรมฟอกย้อมในบางพื้นที่ลง ได้มาก โดยการนำเทคโนโลยีสะอาดเข้ามาจัดการน้ำเสีย เพื่อให้เกิดการใช้ทรัพยากรน้ำอย่างมี ประสิทธิภาพและเกิดประโยชน์สูงสุด และลดปัญหามลพิษซึ่งส่งผลกระทบต่อสิ่งแวดล้อม อีกทั้ง ส่งเสริมให้เกิดการพัฒนาขีดความสามารถในการแข่งขันแก่อุตสาหกรรมประเภทนี้.
\square
d

กระบวนการฟอกย้อมมีขั้นตอนต่างๆ ตั้งแต่การเตรียมผ้า โดยกำจัดสิ่งสกปรก, การลอก แป้ง, การกำจัดไขมัน, การฟอกขาว, การย้อมสี/พิมพ์ผ้า รวมถึงขั้นตอนการตกแต่งสำเร็จ ซึ่งมี การใช้สารเคมีและน้ำ ตลอดจนกระบวนการก่อให้เกิดน้ำเสียปริมาณมาก น้ำเสียจากอุตสาหกรรม ฟอกย้อมส่วนใหญู่เกิดจากการล้างทำความสะอาดเนื้อผ้าและการปรับสภาพเนื้อผ้าให้เหมาะสมกับ การย้อม ซึ่งในการย้อมนั้น จะมีน้ำเสียที่เหลือในถังย้อมและน้ำเสียจากกระบวนการล้างสีย้อม ออกมาจากผ้าที่ผ่านการย้อมแล้ว ซึ่งโดยปกติในการฟอกและย้อมสีผ้า 1 กิโลกรัมจะใช้น้ำประมาณ $80-100$ ลิตร และน้ำเสียจำเป็นต้องถูกบำบัดก่อนปล่อยสู่ทางน้ำสาธารณะ ซึ่งประมาณ 80% ของ สารปนเปื้อน และ 90% ของอนินทรีย์ ปนเปื้อนออกมากับน้ำเสีย.

1.1 น้ำเสียของอุตสาหกรรมฟอกย้อม

1.1.1 น้ำใช้ในอุตสาหกรรมฟอกย้อม

จากการสำรวจของคณะทำงาน วว. อุตสาหกรรมฟอกย้อมมีการใช้น้ำมาก คุณภาพน้ำที่ ใช้ในอุตสาหกรรมฟอกย้อม ดังแสดงในตารางที่ 1 . ส่วนปริมาณน้ำใช้ของกระบวนการผลิตสิ่งทอ ต่างๆ ดังแสดงในตารางที่ 1 และ 2 ประเมินโดยเฉลี่ยใช้น้ำประมาณ 1,000 ลูกบาศก์เมตร/โรงงาน/ วัน ซึ่งอาจก่อให้เกิดปัญหาการขาดแคลนน้ำในอนาคตได้ รวมถึงการใช้พลังงานเนื่องจาก กระบวนการฟอกย้อมส่วนมากกระทำที่อุณหภูมิสูงกว่าอุณหภูมิห้อง เช่น การระเหยแห้ง, การอุ่น ถังน้ำยาเคมี, การย้อมที่อุณหภูมิสูง เป็นต้น.

การหมุนเวียนน้ำกลับมาใช้ใหม่อย่างมีประสิทธิภาพ จะช่วยลดการสูญเสียทั้งปริมาณน้ำ และพลังงานด้วย.

ตารางที่ 1. ตารางแสดงคุณภาพน้ำเฉลี่ยที่ใช้ในอุตสาหกรรมฟอกย้อม (แสดงปริมาณสารที่ยอม ให้มิมินน้ำใด้)

คุณภาพหรือสารเจือปน	ปริมาณที่ยอมรับได้ (มก./ล.)
ความขุ่น	น้อยกว่า 5
สารแขวนลอยที่เป็นของแข็ง	น้อยกว่า 5
สี	น้อยกว่า 10 หน่วย (Hazen)
สภาพความเป็นกรด-เบส (pH)	7-9
ความเป็นกรดค่าง (acidity/alkalinity)	น้อยกว่า 100 ในรูปของแคลเซียมคาร์บอเนต
ความกระด้าง	น้อยกว่า 70 ในรูปของแคลเซียมคาร์บอเนต
เหล็ก	น้อยกว่า 0.3
แมงกานีส	น้อยกว่า 0.05
ทองแดง	น้อยกว่า 0.01
ตะกั่วหรือโลหะหนัก	น้อยกว่า 0.01
อะลูมิเนียม	น้อยกว่า 0.25
ซิิิกา	น้อยกว่า 10
ซัลเฟต	น้อยกว่า 250
ซัลไฟต์	น้อยกว่า 1
คลอไรด์	น้อยกว่า 250
ฟอสเฟต	ไม่จํากัด
ออกซิเจนที่ละลายน้ำ	ไม่จำกัด
คาร์บอนไดออกไซด์	น้อยกว่า 50
ไนไตรต์	น้อยกว่า 0.5
คลอรีน	น้อยกว่า 0.1
แอมโมเนีย	น้อยกว่า 0.5
น้ำมัน, ขี้ผึ้ง,ไขมัน	น้อยกว่า 1.0
สารเรืองแสง	น้อยกว่า 0.2
ของแข็งทั้งหมด (Total solid)	น้อยกว่า 500

* ปริมาณต่ำสุด 0.1 มก./ส. สำหรับบางอย่าง

I

1.1.2 น้ำเสียจากอุตสาหกรรมฟอกย้อม

กระบวนการฟอกย้อมเป็นกระบวนการแบบเปียก ซึ่งมีการใช้ตัวทำละลาย จึงอาจมีการ ปล่อยสารอินทรีย์ระเหย่าย (volatile organic compounds, VOCS) จากขั้นตอนการตกแต่งสำเร็จ หรือขั้นตอนการอบแห้งและบริเวณที่ใช้ VOC ความเข้มข้นของ VOC อาจมีตั้งแต่ 10 มิลลิกรัม คาร์บอน/ลูกบาศก์เมตรขึ้นไป ในกรณีกระบวนการเทอร์โมโซล (thermosol process) จนถึง 350 มิลลิกรัมคาร์บอน/ลูกบาศก์เมตรในกรณีการอบแห้งและกลั่นตัว ซึ่งอาจใช้สครับเบอร์ (scrubber) ดักไอ VOC, ใช้ถ่านกัมมันต์ดูดซับไว้และการป้อนเข้าระบบการเผาไหม้เพื่อกำจัด VOC ก่อนปล่อย ออกสู่บรรยากาศ.

สำหรับน้ำเสียจากอุตสาหกรรมฟอกย้อมนั้นเป็นแหล่งใหญ่ของน้ำเสีย ซึ่งอัตราการใช้น้ำ และคุณภาพน้ำรวมถึงปริมาณน้ำเสียของกระบวนการฟอกย้อมแต่ละแห่งจะแตกต่างกันไปแล้วแต่ ผลิตภัณฑ์ผ้า ซึ่งส่วนมากมีการใช้เคมีมาก จึงมีการใช้น้ำปริมาณมากตั้งแต่ขั้นตอนการลอกแป้ง การกำจัดสิ่งสกปรก การย้อม การพิมพ์ และการตกแต่งสำเร็จ ล้วนต้องการน้ำล้างทำความ สะอาดผ้าเพื่อไปสู่ขั้นตอนต่อไปของกระบวนการ ประมาณ $60-90 \%$ ของน้ำใช้ทั้งหมดเป็นน้ำ ล้างซึ่งก่อให้เกิดน้ำเสีย อัตราการใช้น้ำ 160 กิโลกรัม/กิโลกรัมผ้า. ผ้าจากเส้นใยธรรมชาติใช้น้ำ มากที่สุด โดยเฉพาะอย่างยิ่งผ้าฝ้าย การฟอกย้อมผ้าฝ้ายใช้น้ำถึง $100-150$ ลิตร/กิโลกรัมผ้า ส่วนผ้าขนสัตว์ใช้น้ำมากถึง 200 ลิตร/กิโลกรัมผ้า. สำหรับเส้นใยสังเคราะห์ ใช้น้ำน้อยกว่าเมื่อ เทียบกับหน่วยของผลิตภัณฑ์ น้ำเสียที่เกิดขึ้นและถูกปล่อยออกจากระบบในกระบวนการฟอก ย้อมมีปริมาณใกล้เคียงกับปริมาณที่ป้อนเข้าระบบ ซึ่งมีการสูญเสียบ้างจากสายการผลิตและการ ระเหยออกไปบ้างในระหว่างการย้อม และระเหยแห้ง หรือปริมาณน้ำเสียสามารถประมาณได้ $90-$ 95% ของปริมาณน้ำใช้ คุณภาพน้ำเสียของกระบวนการฟอกย้อมแต่ละชนิดผ้าและแต่ละขั้นตอน แตกต่างกันไปดังแสดงในตารางที่ 3 .
\square
0

ตารางที่ 2. ปริมาณน้ำใช้เฉลี่ย, ต่ำสุด, สูงสุด ของกระบวนการผลิตสิ่งทอประเภทต่าง ๆ กัน

	Subcategory	Water Usage ($\mathbf{L} \mathbf{~ k g - 1)}$		
		Min	Med	Max
1	Wool scouring	4.2	11.7	77.6
2	Wool finishing	110.9	283.6	657.2
3	Low water use processing	0.8	9.2	140.1
4 Woven fabric finishing				
	a. Simple processing	12.5	78.4	275.2
	b. Complex processing	10.8	86.7	276.9
	c. Complex processing plus desizing	5.0	113.4	507.9
5 Knit fabric finishing				
	a. Simple processing	8.3	135.9	392.8
	b. Complex processing	20.0	83.4	377.8
	c. Hosiery processing	5.6	69.2	289.4
6	Carpet finishing	8.3	46.7	162.6
7	Stock and yarn finishing	3.3	100.1	557.1
8	Non-woven finishing	2.5	40.0	82.6
9	Felted fabric finishing	33.4	212.7	930.7

I

ตารางที่ 3. คุณสมบัติของน้ำเสียและปริมาณในอุตสาหกรรมสิ่งทอแยกตามประเภท/ขั้นตอน ต่างๆ

Process and unit (U)	Waste volume (m3/U)	$\begin{gathered} \text { BOD } \\ (\mathrm{kg} / \mathrm{U}) \end{gathered}$	$\begin{gathered} \mathrm{TSS} \\ (\mathrm{~kg} / \mathrm{U}) \end{gathered}$	Other pollutants $(\mathrm{kg} / \mathrm{U})$
Wool processing (metric ton of wool) ${ }^{\text {a }}$				
Average unscoured stock ${ }^{\text {b }}$	544	314	196	Oil 191
Average scoured stock	537	87	43	$\mathrm{Cr} \quad 1.33$
Process-specific				Phenol 0.17
Scouring	17	227	153	$\mathrm{Cr} \quad 1.33$
Dyeing	25	27		Phenol 0.17
Washing	362	63		
Carbonizing	138	2	44	Oil 191
Bleaching	12.5	1.4		$\mathrm{Cr} \quad 1.33$
				Phenol 0.17
Cotton processing (metric ton of cotton)				
Average compounded ${ }^{\text {c }}$	265	115	70	
Process-specific				
Yarn sizing	4.2	2.8		
Desizing	22	58	30	
Kiering	100	53	22	
Bleaching	100	8	5	
Mercerizing	35	8	2.5	
Dyeing	50	60	25	
Printing	14	54	12	
Other fibers (metric ton of product)				
Rayon processing	42	30	55	
Acetate processing	75	45	40	
Nylon processing	125	45	30	
Acrylic processing	210	125	87	
Polyester processing	100	185	95	

a. The pH varies widely, from 1.9 to 10.4 .
b. The average compounded load factors listed are based on the assumption that only 20% of the product is mercerized (only nonwoolen components are mercerized) and 10% is bleached.
c. The average compounded load factors listed are based on the assumption that only 35% of the product is mercerized, 50% of the product is dyed, and 14% of the product is printed.

5
Δ
I

น้ำเสียจากกระบวนการฟอกย้อมส่วนใหญ่มีด่าง (alkaline) และค่า BOD สูง ตั้งแต่ $700-$ $2,000 \mathrm{mg} / 1$ และ COD สูงประมาณ $2-5$ เท่าของ BOD มีของแข็ง, น้ำมัน และอาจมีสารอินทรีย์ที่ เป็นพิษเจือปน รวมทั้งสารประกอบอินทรีย์พวกฮาโลเจน (halogenated oraganic) จากขั้นตอนการ ฟอกขาว. นอกจากนี้ น้ำเสียจากการย้อมสีมักสีเข้มหรืออาจมีโลหะหนัก เช่น ทองแดงหรือ โครเมียม เจือปน.

น้ำเสียจากขั้นตอนต่างๆ ของกระบวนการฟอกย้อมประกอบไปด้วยสารอินทรีย์ และ อนินทรีย์ปะปน แตกต่างกันไปขึ้นกับชนิดและกระบวนการของสิ่งทอนั้นๆ ดังกล่าวมาแล้ว พอจะสรุปสิ่งเจือปนหรือสารประกอบในน้ำเสียจากขั้นตอนหลักๆ ได้ ดังตารางที่ 4.

ตารางที่ 4. สิ่งเจือปน (สารประกอบ) ในน้ำเสียตามขั้นตอนต่างๆ ของกระบวนการฟอกย้อม

ขั้นตอน (กระบวนการ)	สารประกอบ
ลอกแป้ง (desizing)	แป้ง (size, starch), เอ็นไซม์ (enzymes), ไข (waxes)
	และ แอมโมเนีย (ammonia)
กำจัดสิ่งสกปรก (scouring)	ยาม่าเชื้อ (disinfectants), สารตกค้าง
ฟอกขาว (bleaching)	$\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{AOX}$, โซเดียมซิลิเกต (sodium silicate) หรือ
	Organic stabilizer และ pH สูง
ชุบมัน (mercerizing)	pH สูง และ NaOH
ย้อมสี (dyeing)	สี, โลหะ, เกลือ, สารซักฟอก (surfactants), สารช่วย
	ย้อม, ซัลไฟด์ (sulphide), ความเป็นกรด/ด่าง และ
	ฟอมัลดิไฮด์ (formaldehyde)
พิมพ์ (printing)	ยูเรีย (urea), สารทำละลาย (solvents), สี และ โลหะ
ตกแต่งสำเร็จ (finishing)	เรซิน, ไข (waxes), สารประกอบคลอรีน (chlorinated
	compounds), อะซิเตต (acetate), สเตียเรต (stearate),
	ตัวทำละลาย (solvents) และ softeners

บางแห่งขั้นตอนการลอกแป้งถูกผนวกกับขั้นตอนกำจัดสิ่งสกปรก ซึ่งเป็นแหล่งน้ำเสียที่ ก่อมลพิษที่สำคัญ ปริมาณมลพิษจำเพาะของแป้ง (sizing agent) มีค่า $1-2 \mathrm{COD}$ /กรัมของแป้ง เมื่อพิจารณาแป้งธรรมชาติซึ่งมีโครงสร้างหลักเป็นแป้ง (starch) หรือโปรตีน (protein) จึงมีค่า BOD สูง และอัตราส่วน $\mathrm{BOD} / \mathrm{COD}$ อยู่ในช่วง $0.6-0.7$ ส่วนแป้งสังเคราะห์ เช่น พอลีไวนิล แอลกอฮอล์, พี วี เอ (polyvinyl alcohol, PVA) หรือ คาร์บอกซี่เมทธิลเซลลูโลส (carboxymethyl
cellulose) เกือบจะไม่มีค่า BOD เลย สามารถคำนวณปริมาณสารอินทรียัอันเนื่องมาจากขั้นตอน การลอกแป้งโดยประมาณ บนพื้นฐานของปริมาณที่เคลือบบนเส้นด้ายของสิ่งทอนั้น ซึ่งแป้งที่ เคลือบอยู่ทั่วไปประมาณ $5-20 \%$ โดยน้ำหนักของเส้นด้าย สำหรับน้ำเสียจากการกำจัดสิ่งสกปรก (scouring) แตกต่างกันไปตามธรรมชาติและปริมาณสิ่งสกปรกที่อยู่บนเส้นใย รวมทั้งลักษณะของ กระบวนการ น้ำเสียส่วนนี้ มีของแข็งแขวนลอยและสารอินทรีย์สูง อาทิ สิ่งสกปรก, ไข, ไขมัน ในขนสัตว์, น้ำมัน, สารที่มีในพืช อีกทั้งสารซักฟอก, สบู่, ด่าง และตัวทำละลาย ตลอดจนอาจมี ยาฆ่าแมลงเจือปนด้วย โดยทั่วไปเส้นใยสังเคราะห์จะมีความสกปรกน้อยกว่าเส้นใยจากธรรมชาติ การกำจัดสิ่งสกปรกของเส้นใยสังเคราะห์เพื่อล้างเอาแป้งและน้ำมันที่เคลือบไว้ออก จึงมักนำเอา ขั้นตอนการลอกแป้งรวมกับขั้นตอนการกำจัดสิ่งสกปรกเป็นขั้นตอนเดียวกัน.

การฟอกขาวโดยการใช้สารเคมีฟอกขาว ซึ่งมีใช้กันอยู่ เช่น ไฮโดรเจนเปอร์ออกไซด์ (hydrogen peroxide), โซเดียมไฮโปคลอไรด์ (sodium hypochlorite), โซเดียมคลอไรต์ (sodium chlorite), หรือก๊าซซัลเฟอร์ไดออกไซด์ $\left(\mathrm{SO}_{2}\right)$ ผ้าฝ้าย หรือ ผ้าใยผสม นิยมใช้ไฮโดรเจนเปอร์ออกไซด์มากที่สุด และมีการใช้ไฮโดรเจนเปอร์ออกไซด์มากกว่า 90% ของการใช้สารฟอกขาวทั้ง หมดที่ใช้ผลิตสิ่งทอ โดยใช้ร่วมกับสารละลายด่าง น้ำเสียในส่วนนี้จึงมีสารเคมีเจือปนเป็นหลัก, ส่วนขั้นตอนการชุบมัน (mercerizing) ใช้กับการผลิตผ้าฝ้าย เพื่อเพิ่มประสิทธิภาพในการย้อมและ เพื่อให้เส้นใยเงามัน โดยจุ่มในสารละลายด่างโซเดียมไฮดรอกไซด์ (sodium hydroxide) จากนั้น ปรับ pH ให้เป็นกลาง จึงล้างด้วยน้ำล้าง มักใช้ด่างมาก อาจใช้ถึงประมาณ 20% ของน้ำหนักผ้า (http://www.owue.water.ca.gov/recycle/dous/RW_Dye.pdf), น้ำเสียส่วนใหญ่นี้มีโซเดียมไฮดรอก ไซด์เจือปนมาก.

ค่า $\mathrm{BOD}, \mathrm{COD}, \mathrm{TSS}, \mathrm{N}$ และ P เป็นพารามิเตอร์ที่บ่งบอกลักษณะของน้ำเสียฟอกย้อม โดยกระบวนการหลักของการผลิตสิ่งทอ ดังแสดงในตารางที่ 5.

5
(10

ตารางที่ 5 . ความเข้มข้นเฉลี่ย และ ปริมาณจำเพาะของน้ำเสียในขั้นตอนหลักของกระบวนการ ฟอกย้อม

แม้ในปัจจุบันได้มีการพัมนาสีย้อมผ้าให้ย่อยสลายได้ด้วยกระบวนการทางชีวภาพ (biodegradable) มากขึ้น แต่น้ำเสียจากการย้อมสีผ้ายังคงงเป็นแหล่งสำคัญที่ก่อให้เกิดมลพิษแก่แหล่ง น้ำ ประมาณ $10-15 \%$ ของสีย้อม 700,000 ตัน ที่ผลิตได้ในแต่ละปีทั่วโลกถูกปล่อยออกไปกับน้ำ เสียในกระบวนการย้อมสี (Dore 1997) และสีรีแอกทีฟประมาณ $20-30 \%$ ของตลาดทั้งหมด (Gregor 1992) มีค่าอัตราการผนึกสี (fixation) ต่ำ โดยเฉพาะอย่างยิ่งสีโมโนรีแอกทีฟ
(1)
(monoreactive dye) (Masten and Daviex 1994) เมื่ออัตราการผนึกสีต่ำ สีก็จะหลงเหลืออยู่ในน้ำ ย้อมหลังการย้อมมาก และรวมถึงในน้ำล้างด้วย หลังจากย้อมสีด้วยสีรีแอกทีฟประมาณ 800 มิลลิกรัมต่อลิตรของสีรีแอกทีฟที่แตกตัวคงเหลือในน้ำย้อม (Gregor 1992) การย้อมสีผ้ามักใช้สี ย้อมผ้าร่วมกับการใช้เคมีประเภทอื่น เช่น กรด, ด่าง, เกลือ, สารผนึกสี(fixing agent), ตัวพา (carries), ดิสเฟสซิ่งเอเจนต์ (dispersing agent), สารซักฟอก (surfactants) ซึ่งส่วนมากอาจจะ เกือบทั้งหมดถูกปล่อยออกไปกับน้ำหลังการย้อม รวมทั้งสารพวกแอดดิทีฟ (additive) และ สิ่งเจือปนอื่นๆ ที่มากับตัวสีย้อมอุตสาหกรรมเองด้วย, นอกจากสารเคมีและสารอินทรีย์ต่างๆ จะ เจือปนในน้ำดังที่กล่าวมาแล้วนั้น ยังอาจมีโลหะเจือปนด้วย ปัจจุบันมีแนวโน้มที่จะมีโลหะ หนักเจือปนลดลงเรื่อยๆ เนื่องจากการลดการใช้สีย้อมที่มีองค์ประกอบของโลหะ ซึ่งหมายรวมถึง ทองแดง, โครเมียม, นิกเกิล, ตะกั่ว และสังกะสี โลหะที่พบเจือปนในน้ำเสียของกระบวนการ ฟอกย้อมอาจมาจากเส้นใย แหล่งน้ำที่ใช้ สีย้อม และสารเคมีปนเปื้อน สีย้อมอาจมีสารเคมี ปนเปื้อน เช่น สังกะสี นิกเกิล โครเมียม และโคบอลต์ ซึ่งอยู่ในองค์ประกอบของโครงสร้างของ สีย้อม หรือเจือปนมากับสีย้อม (http://www.owue.water.ca.gov/recycle./docs/rw_syc.pdf:) ความเข้มข้นของโลหะหนักที่ออกจากหม้อย้อม โดยทั่วไปอยู่ในช่วงประมาณ $1-10$ มิลลิกรัมต่อ ลิตร (Master and Davices 1994) แม้การเลือกใช้สีย้อมที่สามารถย่อยสลายได้โดยกลไกทาง ชีววิทยา (biodegradable) แต่นอกเหนือสีย้อมแล้ว สารอินทรีย์ที่ยังคงเหลือไม่สามารถย่อยสลายทาง ชีวภาพด้วยการเติมอากาศ เช่น สารซักฟอกและสารพลอยได้ (by product) สารช่วยข้อม เช่น พอลีอะคริเลต (polyacrylates), ฟอสโฟเนต (phosphonates), sequestering agents, แป้งสังเคราะห์, แอนตี้สแตติก (anti-static) ดิสเพิส (dispersing agents) สารพรีเซอร์เวทีฟ และสารช่วยตกแต่ง เป็น ต้น นอกจากนี้ การใช้ตัวทำละลายบางชนิดในกระบวนการฟอกย้อม เช่น ในขั้นตอนการกำจัดสิ่ง สกปรก หรือขั้นตอนการพิมพ์ ก่อให้เกิดของเสียเสี่ยงอันตราย (hazardous organic wastes) (http://www.owve.water./recyile/does/RW_Dye_pdf) สารประกอบอินทรีย์ฮาโลเจน (halogenated organic compounds, AOX) อาจเกิดจากกระบวนการฟอกขาวด้วยไฮโปคลอไรต์ (hypochlorite) หรือจากน้ำทิ้งหลังจากการตกแต่งสำเร็จด้วยการควบคุมการทด (shrink - proofing finishing treatment) ด้วยการใช้คลอรีน ซึ่งอาจมีปริมาณ AOX ในน้ำที่ปล่อยออกจากการฟอกขาวถึง 100 มิลลิกรัม/ลิตร ตลอดจนอาจมีสารก่อมะเร็ง (carcinogenic chloroform) ในปริมาณที่ต้องพิจารณา อย่างสนใจ แต่ปัจจุบันส่วนมากจะใช้ไฮโดรเจนเปอร์ออกไซด์เป็นสารฟอกขาว อย่างไรก็ตามที่ จะต้องคำนึงถึงคือ สีรีแอกทีฟบางตัว เป็น AOX.

5
(10

กระบวนการฟอกย้อม มีการใช้เกลือปริมาณมาก ปริมาณเกลือที่เติมในขั้นตอนการย้อมสี อยู่ในช่วง $20-80 \%$ ของน้ำหนัก สิ่งทอหรือเกลือที่เกิดจากการปรับกรด-ด่าง หรือปฏิกิริยาเคมี ระหว่างกระบวนการ ทำให้เกิดปัญหาการมีเกลือสูงในน้ำเสียของกระบวนการฟอกข้อม ความ เข้มข้นของเกลือในน้ำเสียหลังการย้อมฝ้ายอาจสูงถึง $2,000-3,000 \mathrm{ppm}$.

โครงการพัฒนาการจัดการและระบบบำบัดน้ำเสียอุตสาหกรรมฟอกย้อมเพื่อการนำน้ำ กลับมาใช้ใหม่ เป็นชุดโครงการศึกษาวิจัยที่ประกอบด้วย 4 โครงการย่อยดังนี้:

1. โครงการศึกษาการใช้เทคโนโลยีสะอาด (Clean Technology) เพื่อการพัฒนาระบบการ จัดการน้ำเสียและการบำบัดน้ำเสียอุตสาหกรรมฟอกย้อม เพื่อการลดปริมาณการใช้น้ำและนำน้ำ กลับมาใช้ใหม่.
2. โครงการพัฒนาระบบบำบัดน้ำเสียจกกอุตสาหกรรมฟอกย้อม เพื่อการนำน้ำกลับมาใช้ ใหม่โดยใช้ระบบเนื้อเยื่อ (Integrate Membrane System) และระบบเมมเบรนแบบจมตัว (Immersed Membrane).
3. โครงการพัฒนาการใช้โอโซน (Ozone) ในการกำจัดสีในน้ำสียอุตสาหกรรมฟอกย้อม
4. โครงการเผยแพร่และส่งงสริมการใช้ระบบบำบัดน้ำเสียแบบการนำน้ำกลับมาใช้ใหม่ ในอุตสาหกรรมฟอกย้อม.

เนื่องจากในปัจจุบันระบบการบำบัดน้ำเสียจากอุตสาหกรรมฟอกย้อมที่ใช้กันอยู่มักเริ่มมี การตกตะกอนน้ำเสียโดยการเติมสารส้มเพื่อปรับค่า pH ในน้ำเสียตกตะกอนสีในบางส่วนที่ สามารถตกตะกอนได้แยกออกไป แล้วผ่านระบบการบำบัดโดยวิธีการทางชีวภาพ น้ำเสียที่ผ่าน การบำบัดทั้งสองขั้นตอน แม้จะสามารถลคค่า $\mathrm{BOD}, \mathrm{COD}$ และปริมาณสารแขวนลอยลงได้ใน ระดับที่สามารถยอมรับได้ แต่ก็ยังคงมีสีหลงเหลืออยู่ สีที่ยังคงหลงเหลืออยู่เป็นอุปสรรคให้การนำ น้ำกลับไปไช้ซ้ำ เนื่องจากส่วนใหญู่เป็นสีรีแอกทีฟซึ่งจะไม่ตกตะกอนและถูกย่อยสลายจากจุลินทรีย์ได้น้อย.

ในโครงการวิจัยนี้จะเป็นการบำบัดน้ำเสียในส่วนที่เป็นสีรีเอกทีฟโดยจะทำการบำบัด ณ จุดที่มีการย้อมสีรีแอคทีฟ และน้ำสียจากน้ำล้างหลังผ่านกระบวนการฟอกย้อม โดยใช้โอโซนจะ บำบัดโดยการพ่นโอโซนให้ผสมกับน้ำเสีย ซึ่งโอโซนจะทำให้สีรีแอคทีฟแตกตัวออกเป็น คาร์บอนไดออกไซด์และน้ำ ซึ่งสีในน้ำเสียลดลง แล้วนำน้ำเสียที่ผ่านการบำบัดแล้วกลับไปใช้ซ้ำ โดยไม่ทำให้กระบวนการฟอกย้อมและคุณภาพของผ้าที่ผ่านกระบวนการย้อมมีการเปลี่ยนแปลง.

2. วิธีการดำเนินงาน

2.1 ทำการศึกษาและรวบรวมข้อมูลผลงานวิจัยย่อยของชุดโครงการพัฒนาการจัดการและ ระบบบำบัดน้ำเสียอุตสาหกรรมฟอกย้อม เพื่อการนำน้ำกลับมาใช้ใหม่ ซึ่งประกอบด้วยโครงการ ศึกษาการใช้เทคโนโลยีสะอาด (Clean Technology) เพื่อการพัฒนาระบบการจัดการน้ำเสีย และการ บำบัดน้ำเสียอุตสาหกรรมฟอกย้อม, เพื่อการลดปริมาณการใช้น้ำและนำน้ำกลับมาใช้ใหม่ โครง การพัฒนาระบบบำบัดน้ำเสียจากอุตสาหกรรมฟอกย้อม, เพื่อการนำน้ำกลับมาใช้ใหม่โดยใช้ระบบ เนื้อเยื่อ (Integrated Membrane System) และระบบเมมเบรนแบบจมตัว (Immersed Membrane) และโครงการพัฒนาการใช้โอโซน (Ozone) ในการกำจัดสีในน้ำเสียอุตสาหกรรมฟอกย้อม และนำ ข้อมูลที่ได้จากโครงการดังกล่าวมาประมวลเพื่อวางแผนการเผยแพร่.
2.2 ทำการสำรวจกลุ่มโรงงานอุตสาหกรรมฟอกย้อม และหน่วยงานที่เกี่ยวข้อง โดยการ เข้ายยื่ยมชมโรงงานเพื่อศึกษาข้อมูลและปัญหาด้านต่างๆ ในระบบการผลิต, การบำบัดและการจัด การน้ำเสียของโรงงาน เพื่อเป็นข้อมูลในการนำผลงานวิจัยไปเผยแพร่.
2.3 นำข้อมูลและผลการประเมินโรงงานอุตสาหกรรมฟอกย้อมมาจัคการวางแผนการ เผยแพร่ และประชาสัมพันธ์งานวิจัย ด้วยการอบรมสัมมนาเชิงปฏิบัติการ เชิญชวนเพื่อให้กลุ่ม อุตสาหกรรมฟอกย้อม และหน่วยงานที่กี่ยวข้อง เข้าร่วมสัมมนาโดยใช้แผ่นพับเพื่อประชาสัมพันธ์ เพื่อให้กุ่มโรรงงานอุตสาหกรรมฟอกข้อมและหน่วยงานที่เกี่ยวข้องได้มีความรู้ความเข้าใจเกี่ยวกับ น้ำทิ้งในระบบและน้ำเสียที่ปล่อยออกมาจากระบบ การจัดการน้ำและการบำบัด รวมถึงแนวทาง และวิธีการที่จะนำผลงานการวิจัยไปใช้ในการบำบัด และจัดการน้ำเสีย เพื่อให้มีการใช้น้ำอย่าง ประหขัดและมีประสิทธิภาพ และมุ่งเน้นที่จะนำน้ำกลับไปใช้ใหม่.
2.4 ทำการเผยแพร่โดยการไปพบปะ และให้ความรู้ทางค้านการบำบัดน้ำเสียจากการฟอก ย้อมให้กับเจ้าหน้าที่ที่เกี่ยวข้อง เพื่อนำน้ำกลับมาใช้ซ้ำ และการบำบัดน้ำเสียแบบแยกส่วนเพื่อเป็น การแยกบำบัดน้ำตามลักษณะของน้ำเสียเฉพาะส่วน และสามารถเลือกวิธีบำบัดให้เหมาะสมกับ มลพิษที่ปนเปื้อนมากับน้ำเสียในแต่ละส่วน ซึ่งทำให้สามารถเลือกวิธีบำบัดน้ำเสียได้เหมาะสม.
2.5 นำผลงานวิจัยไปจัดนิทรรศการในงานการประชุมสมัชชาน้ำแห่งชาติ ที่สหประชาชาติ กรุงเทพมหานคร และนำไปจัดนิทรรศการในงาน International Conference Hazardous Waste Management for a Sustainable Future.

3. ผลการเผยแพร่

3.1 จากการประมวลผลข้อมูลการศึกษาการใช้เทคโนโลยีสะอาด (Clean Technology) เพื่อ การพัฒนาระบบการจัดการน้ำเสียและการบำบัดน้ำเสียอุตสาหกรรมฟอกย้อม เป็นระบบบำบัดที่ลด ปริมาณการใช้น้ำและนำน้ำกลับมาใช้ใหม่ โดยเน้นการส่งเสริมการบำบัดน้ำเพื่อประหยัดต้นทุนใน การผลิตโดยการนำน้ำกลับมาใช้ใหม่เพื่อสร้างความมั่นคงและยกระดับคุณภาพอุตสาหกรรม โรงงานฟอกย้อม โดยการใช้วิธีการบำบัดน้ำเสียแบบใช้เนื้อเยื่อ (Integrated Membrane System) และระบบเมมเบรนแบบจมตัว(Immersed Membrane) และการใช้โอโซนในการกำจัดสีในน้ำเสีย จากอุตสาหกรรมฟอกย้อม.

รูปที่ 1 . ระบบบำบัดน้ำเสียโดยใช้เมมเบรนแบบจมตัว.

รูปที่ 2. เครื่องผลิตโอโซนที่ใช้ในการบำบัดน้ำเสียจากกระบวนการย้อมสีรีแอกทีฟ.
3.2 จากการสำรวจกลุ่มโรงงานอุตสาหกรรมฟอกย้อม 5 โรงงาน ได้แก่ บริษัท ทอง ไทยเท็กไทล์ จำกัด, บริษัท มั่นยิ่ง จำกัด, บริษัท แปซิฟิกฟอกย้อม จำกัด, บริษัท เชียงแสงเท็กไทล์ อินดัสตรีส์ จำกัด, และบริษัท สามพราน จำกัด ดังแสดงในตารางที่ 6 .

โรงงาน	ทองไทย	มั่นยิ่ง	แปซิฟิค	เชียงแสง	สามพราน
อุตสาหกรรม	Dyeing for				
	Knitted Fabric	Woven Fabric	Knitted Fabric	Lace \&	Woven Fabric
				Embroideries	
กำลังการผลิต	$230 \mathrm{ton} / \mathrm{m}$	$5 \mathrm{Myd} / \mathrm{m}$	390 ton/m	$\mathrm{E}: 1 \mathrm{Myd} / \mathrm{m}$	
		($2500 \mathrm{ton} / \mathrm{m}$)	(Yarn 120 ton $/ \mathrm{m}$)	(150 ton/m)	(990 ton/m)
				L: 26 ton/m	
ชนิดเส้นใย	100\%-C : 80\%	100\% Pe :	TC/CVC : 40\%	TC/CVC : 65\%	$100 \% \mathrm{Pe}$:
	TC/CVC :	95\%	100\% Pe : 40%	100\% Pe : 15%	42\%
	20\%	Nylon : 5\%	100\%-C : 10\%	100\%-C : 20\%	TC/TR : 33\%
			Nylon : 10\%	Nylon : few	Yarn Dy :
					25\%
					Nylon : few
แหล่งน้ำ	บาดาล	น.แม่กลอง	บาดาล	บาดาล	บาดาล
ปริมาณ	$1200 \mathrm{~m}^{3} / \mathrm{d}$	$1200 \mathrm{~m}^{3} / \mathrm{d}$	$3500 \mathrm{~m}^{3} / \mathrm{d}$	$900 \mathrm{~m}^{3} / \mathrm{d}$	$6500 \mathrm{~m}^{3} / \mathrm{d}$
น้ำใช้ Process	$1120 \mathrm{~m}^{3} / \mathrm{d}$	$10100 \mathrm{~m}^{3} / \mathrm{d}$	$3450 \mathrm{~m}^{3} / \mathrm{d}$	$880 \mathrm{~m}^{3} / \mathrm{d}$	$6400 \mathrm{~m}^{3} / \mathrm{d}$
น้ำใช้อื่นๆ	$80 \mathrm{~m}^{3} / \mathrm{d}$	$1900 \mathrm{~m}^{3} / \mathrm{d}$	$50 \mathrm{~m}^{3} / \mathrm{d}$	$20 \mathrm{~m}^{3} / \mathrm{d}$	$100 \mathrm{~m}^{3} / \mathrm{d}$
ระบบบำบัด	Activ Lagoon				
ปริมาณน้ำเสีย	$1000 \mathrm{~m}^{3} / \mathrm{d}$	$12000 \mathrm{~m}^{3} / \mathrm{d}$	$3300 \mathrm{~m}^{3} / \mathrm{d}$	$900 \mathrm{~m}^{3} / \mathrm{d}$	$6500 \mathrm{~m}^{3} / \mathrm{d}$
พารามิเตอร์	Inf Eff				
BOD (mg/l)	16424	$96 \quad 9$	$540 \quad 11$	$117 \quad 29$	30040
COD (mg/l)	140213	377266	997250	1262244	1764569
SS (mg/l)	$10 \quad 25$	6010	$170 \quad 67$	$67 \quad 40$	$77 \quad 60$

ที่มา: จากการศึกษา $\mathrm{C}:$ Cotton, $\mathrm{Pe}:$ Polyester, $\mathrm{TC}:$ Tetolon Cotton, TR : Tetolon Rayon

3.3 จากการสัมมนาเชิงปฏิบัติการในการเผยแพร่ผลงานวิจัยระบบบำบัดน้ำเสีย ให้แก่กลุ่ม

 โรงงานอุตสาหกรรมฟอกย้อมและหน่วยงานที่เกี่ยวข้อง ดังแสดงในรูปที่ 3-8.

รูปที่ 3. การประชุมสัมมนาเรื่องการบำบัดน้ำเสียโดยใช้เมมเบรน.

รูปที่ 4. อธิบายเกี่ยวกับโครงสร้างของเมมเบรนให้แก่โรงงานในกลุ่มเป้าหมาย.

รูปที่ 5. บรรยายในสัมมนาเชิงปฏิบัติการเรื่องเทคโนโลยีเมมเบรนแบบจมตัว
(submerged membrane technology).

รูปที่ 6. สัมมนาเชิงปฏิบัติการเรื่องเทคโนโลยีเมมเบรนแบบจมตัว (submerged membrane technology).
\because
Δ
]

รูปที่ 7. สาธิตการหาดัชนีตะกอนเพื่อบ่งชี้ถึงการอุดตันในเมมเบรน.

รูปที่ 8. การทดสอบการกรองโดยระบบอัตราฟิลเตรชัน.
3.4 จากการไปพบปะและให้ความรู้ทางด้านการบำบัดน้ำเสียจากการฟอกย้อมให้กับ เจ้าหน้าที่ของโรงงานอุตสาหกรรมฟอกย้อม (TTL) พบว่าสามารถนำผลงานวิจัยไปไช้ได้ โดยการ ทำการบำบัดแบบแยกส่วน, ซึ่งจะทำให้การบำบัดมีประสิทธิภาพลดต้นทุนการผลิตได้และสามารถ นำน้ำกลับไปใช้ใหม่ได้ และทำให้โรงงานบำบัดน้ำเสียรวมสามารถบำบัดได้ง่ายขึ้นและลดต้นทุน ในการบำบัดน้ำเสียรวมได้ด้วย และสามารถนำน้ำเสียกลับไปใช้ซ้ำ ณ จุดนั้นๆ ได้โดยตรง ซึ่งจะทำ ให้การบำบัดง่ายกว่าการนำน้ำเสียจากทุกๆ ส่วนไปรวมกันแล้วบำบัด (end of pipe process) ทำให้ กระบวนการบำบัดยุ่งยากซับซ้อนและการบำบัดสารบางประเภท เช่น สีรีแอกทิฟ จะไม่สามารถ กำจัดได้ทำให้ผลเสียหลังการบำบัดไม่สามารถนำกลับมาใช้ใหม่ได้ หรือถ้าบำบัดเพื่อนำกลับมาใช้ ซ้ำก็จะต้องเพิ่มกระบวนบำบัดขึ้น ก็จะทำให้เสียค่าใช้จ่ายเพิ่มมากขึ้น.

อนึ่งโรงงานอุตสาหกรรมฟอกย้อมที่มีอยู่มักจะมีระบบบำบัดน้ำเสียอยู่แล้วจึงยากที่จะไป ปรับปรุงระบบบำบัดทั้งระบบ และระบบการผลิตแต่ละโรงงานมุ่งกรรมวิธีการผลิตและส่วนการ ผลิตที่แตกต่างกันทำให้การนำเทคโนโลยีการบำบัดน้ำเสีย กลับมาใช้ซ้ำที่พัฒนาขึ้นจะต้องเลือก นำไปใช้ให้เหมาะสมเป็นรายๆ ไป.
3.5 การเผยแพร่ทางนิทรรศการดังภาพการแสดงผลงานการวิจัยในงานสมัชชาแห่งชาติที่ สหประชาชาติ กรุงเทพมหานคร และในงาน International Conference Hazardous Waste Management for a Sustainable Future กรุงเทพมหานคร ในระหว่างวันที่ $10-12$ มกราคม 2549 ดัง แสดงในรูปที่ 9 .

รูปที่ 9. ภาพการจัดแสดงนิทรรศการผลงานการวิจัยการบำบัดน้ำเสีย.

4. สรุปผลการเผยแพร่

จากผลการเผยแพร่ระบบบำบัดน้ำเสียจากอุตสาหกรรมฟอกย้อมเพื่อการนำน้ำกลับมาใช้ ใหม่ โดยใช้ระบบเนื้อเยื่อ (Integrated Membrane System) และระบบเมมเบรนแบบจมตัว (Immersed Membrane) และการใช้โอโซน (Ozone) ในการกำจัดสีในน้ำเสียอุตสาหกรรมฟอกย้อม ให้แก่โรงงานต่างๆ พบว่าในการบำบัดน้ำเสียอุตสาหกรรมฟอกย้อมเพื่อนำน้ำกลับมาใช้ซ้ำ สามารถ ดำเนินได้ 2 แนวทางคือ:

1. นำน้ำเสียที่ผ่านระบบบำบัดที่มีอยู่นั้นมาผ่านระบบบำบัด ด้วยกระบวนการเมมเบรน ซึ่ง ใช้กระบวนการกรองระบบอัลตราฟิลเตรชัน และระบบนาโนฟิลเตรชันหรือรีเวอร์สออสโมซิส ซึ่ง วิธีการนี้จะสามารถนำน้ำกลับมาใช้ได้ประมาณ $20-30 \%$ ของน้ำเสียทั้งหมด ทั้งนี้เพราะถ้านำน้ำเสีย กลับมาใช้ซ้ำมากกว่า 30% จะทำให้น้ำทิ้งมีค่าปริมาณสารละลาย (TDS) เกิน 3,000 มิลลิกรัมต่อลิตร น้ำทิ้งจากโรงงานอุตสาหกรรมซึ่งจะต้องเสียค่าใช้จ่ายเพิ่มเติมจากกระบวนการบำบัดน้ำเสียปกติ ประมาณ 15-20 บาท ทั้งนี้ขึ้นอยู่กลับคุณภาพของน้ำเสีย (รวมค่าใช้จ่ายในการลงทุน).
2. การบำบัดแบบแยกส่วน ณ จุดใช้งาน (in process treatment) โดยการแยกน้ำเสียใน กระบวนการผลิตนำน้ำเสียในส่วนที่ไม่สามารถบำบัดโดยกระบวนการบำบัดแบบปกติ คือสาร ตกตะกอนและการบำบัดทางชีวภาพ ได้นำมาบำบัดในกระบวนการทางเคมีและกระบวนการทาง เมมเบรนดังนี้:
2.1 การบำบัดน้ำเสียจากกระบวนการลอกแป้ง สารเคมีที่เคลือบเส้นด้าย เช่น PVA จะ เป็นสารที่ไม่ถูกย่อยสลายด้วยแบคทีเรีย (Non biodegradable) ซึ่งจะไม่สามารถบำบัดโดยวิธีการ บำบัดทางชีวภาพได้ จึงควรแยกบำบัด ณ จุดใช้งานโดยกระบวนกรองอัลตราฟิลเตชันเพื่อแยกสาร PVA นำกลับไปใช้เคลือบเส้นด้ายส่วนน้ำที่เหลือ พร้อมสารลอกแป้ง สามารถนำกลับไปใช้ใน ระบบได้ การใช้กระบวนการนี้จะสามารถลดปริมาณน้ำเสียรวมได้ประมาณ $10-15 \%$ และสามารถ ลดปริมาณค่า COD ในน้ำเสียลงได้ $5-10 \%$ ค่าใช้จ่ายในการบำบัด $7-10$ บาท/ลูกบาศก์เมตร (รวมค่า ลงทุน).
2.2 การบำบัดน้ำเสียจากการย้อมสีรีแอกทีฟ โดยการใช้โอโซนสามารถบำบัดน้ำเสีย จากสีรีแอกทีฟ จนสีลดลง $60-70 \%$ แล้วนำไปบำบัดต่อด้วยวิธีการบำบัดทางชีวภาพและโดยการใช้ เมมเบรนสามารถนำน้ำกลับมาใช้ซ้ำได้ $20-30 \%$ โดยเสียค่าใช้จ่ายในการบำบัด $15-23$ บาทต่อ ลูกบาศก์เมตร.

จากการดำเนินการเผยแพร่ โรงงาน TTL จำกัด มหาชน มีความสนใจที่จะดำเนินการลงทุน พัฒนาระบบบำบัดน้ำเสียเพื่อการนำน้ำกลับไปใช้ซ้ำ แต่ยังไม่ได้ดำเนินการเนื่องจากภาวะเศรษฐกิจ ไม่เอื้ออำนวย.

5. เอกสารอ้างอิง

Dore, M. 1997. The role of Ozone in Advanced Oxidation Process, Proceeding of FRANCOTHAI Sympo- sium on New Advanced in Water and Wastewater Treatments. Bangkok : Thailand. Chulalongkorn University October 22-24, pp : 13-26.
Gregor, H.K. 1992. Oxidative Decolorization of Textile Wastewater with Advanced Oxidation Processes in Chemical Oxidation Technology for the Nineties-Proceeding of the third International Symposium. Nashiville Tennessce, pp: 161-193.

Masten, J.S. and Davies, H.R.S., 1994. Environment ScienceTechnology. 28(4) : 181-184.
"คุณภาพน้ำเฉลี่ยที่ใช้ในอุตสาหกรรมฟอกย้อม". 2549. [ออนไลน์]. เข้าถึงได้จาก : http://tecnet.tci.or.th/knowledge/wenvez. html.
"คุณสมบัติของน้ำเสียและปริมาณในอุตสาหกรรมสิ่งทอแยกตามประเภท". 2549. [ออนไลน์]. เข้าถึงได้จาก : http://www.ifc.org/ifcext/enviro.nsg/content/Environmental Guidlines.
"น้ำเสีย". 2549. [ออนไลน์]. เข้าถึงได้จาก : http://www.owve.water./recyile/does/RW_Dye_pdf.

ภาคผนวก

รูปที่ 10. ปริมาณการใช้น้ำบาดาลในอุตสาหกรรมประเภทต่างๆ.

รูปที่ 11. แนวทางแก้ไขปัญหาด้านการใช้น้ำของผู้ใช้น้ำจากแหล่งต่างๆ.

รูปที่ 12. ระบบบำบัดน้ำเสียแบบตะกอนเร่งที่ใช้กับอุตสาหกรรมฟอกย้อมทั่วๆ ไป.

รูปที่ 13. ระบบบำบัดน้ำเสียระบบ Integrated Membrane System เพื่อการนำน้ำกลับมาใช้ใหม่.

รูปที่ 14. ระบบการกรอบอัตราฟิลเตรชัน.

รูปที่ 15. ระบบการกรองอัตราฟิลเตรชัน.

รูปที่ 16．การอุดตันของตะกอนบนไส้กรอง 5 ไมครอน．

ประสิทธิภาพของระบบ
 เติยリระリリ
\rightarrow feed brine t－permeate

รูปที่ 17．ค่าความเข้มสีของน้ำเสียก่อนบำบัดและหลังบำบัด

รูปที่ 18. ประสิทธิภาพในการกำจัดสีของระบบบำบัดน้ำเสีย.

รูปที่ 19. สภาพความเป็นด่างของน้ำที่เดินระบบ.

ประสิทธิภาพของระบบ
, ตรงแด่างตเออดระยะ!วตกคกรเดิน

รูปที่ 20. ประสิทธิภาพของการขจัดความเป็นด่างของระบบบำบัด.

รูปที่ 21. ปริมาณความกระด้างของน้ำเสียก่อนการบำบัดและหลังการบำบัด.

รูปที่ 22. ประสิทธิภาพในการขจัดความกระด้างของน้ำเสีย.

รูปที่ 23. ปริมาณแคลเซียมก่อนการบำบัดและหลังการบำบัด.

ประสิทธิภาพของระบบ

รูปที่ 24. ประสิทธิภาพในการขจัดแคลเซียมของระบบบำบัด.

รูปที่ 25 . ปริมาณคลอไรด์ของน้ำก่อนการบำบัดและหลังการบำบัด.

4
\square
Δ
d

รูปที่ 26. ประสิทธิภาพในการกำจัดคลอไรด์ของระบบบำบัดน้ำเสีย.

รูปที่ 27. ดัชนีบ่งชี้การเกิดตะกรันหินปูน ขณะเดินระบบบำบัดน้ำเสีย.

รูปที่ 28. รูปแบบของระบบกรองอัตราฟิลเตรชันที่ออกแบบเพื่อใช้กับ ระบบน้ำเสียอุตสาหกรรมฟอกย้อม.

รูปที่ 29. ค่ามาตรฐานของน้ำที่ใช้ในกระบวนการฟอกย้อม.
a
Δ
(1)

คุณงกพยองนี้ำที่ผลิด ใด้ากับการนำกลับไปไช้ในคระบวนการผลิต 				
		9)109\%	ค่าเอสี่	
	pil		6.01	
		${ }^{\circ} \mathrm{C}$	38.35	
		us	69.07	
		mgl	113.75	
		NTL	0.05	
		St	8	
		ADMI	4.36	
	คคามกระด้าง	$\mathrm{mg} / \mathrm{CaCO}_{3}$	0.12	
	แคล เ大ิ่ยม่	$\mathrm{mg} / \mathrm{CaCO}_{3}$	0.19	
	สยกาพด้าง	$\mathrm{mg} / \mathrm{CaCO}_{3}$	30.75	
	คลอไรด้		11.86	

รูปที่ 31. เงื่อนไขการออกแบบระบบบำบัดน้ำเสียนาโนฟิลเตรชัน.

รายการ	बำนวนงิิน (ำท ต่อ ลル, ม1)	เปอร์เร็นต์ ของต้นทุนจอม
	1.80	18%
	4.23	42.4 \%
ต้บฆููด้า	1.4557	14.6%
ตัแวูบตักบแวงงาบ	1.23	12.3 \%
ตัแทแด้วนการเร\|ดี่ยนเมมเบรน	0.79	7.92 \%
ตันทนด้านการเบลี่ยนไส้กรองไมโครฟิลเตอร์	0.015	0.15%
ต้นทุนด้านการช่อมบำรุงรักษา	0.462	4.63%
รวม	9.9827	100\%

รูปที่ 32. ราคาการลงทุนเบื้องต้นของระบบบำบัดน้ำเสียนาโนฟิลเตรชัน.

รูปที่ 33. รูปชุดทดสอบการใช้โอโซนบำบัดน้ำเสียฟอกย้อม.

รูปที่ 34. อัตราการลดลงของสึในน้ำเสียที่บำบัดด้วยโอโซน.

รูปที่ 35 . เปรียบเทียบน้ำเสียจากกระบวนการย้อมสีรีแอกทีฟก่อนการบำบัดและหลังการบำบัด.

รูปที่ 36. การใช้ tiO_{2} ไทเทเนียมไดออกไซด์แคทาลิสต์ในการบำบัดน้ำเสียสีรีแอกทีฟ.

[^0]: ${ }^{1}$ ฝ่ายวิศวกรรม, สถาบันวิจัยวิทยาศาสตร์และเทคโนโลยีแห่งประเทศไทย (วว.)

